

Developers Guide

OpenL Tablets BRMS
Release 5.18

Document number: TP_OpenL_DG_3.1_LSh

Revised: 07-12-2017

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 4

1.1 Audience .. 4
1.2 Related Information .. 4
1.3 Typographic Conventions .. 4

2 Introducing OpenL Tablets .. 6

2.1 What Is OpenL Tablets? ... 6
2.2 Basic Concepts ... 6

Rules .. 7
Tables .. 7
Projects ... 7
Wrapper .. 7
Execution Mode for OpenL Project ... 7

2.3 System Overview ... 8
2.4 Quick Start with OpenL Tablets ... 8

3 OpenL Tablets Rules Projects .. 10

3.1 OpenL Rules Project .. 10
3.2 Rules Project Descriptor .. 10

Quick Overview ... 10
Descriptor Elements .. 11

3.3 Project Resolving ... 13
3.4 How to Start with OpenL Rules Project ... 13

Creating a Project Using the Maven Archetype .. 13
Creating a Project in OpenL Tablets WebStudio ... 14
Creating a Project Manually .. 15
Editing Rules .. 16
Using OpenL Tablets Rules from Java Code .. 16
Handling Data and Data Types in OpenL Tablets .. 22

3.5 Customizing Table Properties .. 24
Dispatching Table Properties .. 24
Tables Priority Rules .. 24

3.6 Tables Validation ... 25
Table Properties Validators ... 25
Existing Validators ... 26

3.7 Module Dependencies: Classloaders... 26
3.8 Peculiarities of OpenL Tablets Implementation .. 27

Lookup Tables Implementation Details... 27
Range Types Instantiation ... 28

OpenL Tablets Developer's Guide Preface

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 4 of 28

1 Preface
This preface is an introduction to the OpenL Tablets Developer Guide.

The following topics are included in this preface:

 Audience

 Related Information

 Typographic Conventions

1.1 Audience
This guide is mainly intended for developers who create applications employing the table based decision making
mechanisms offered by the OpenL Tablets technology. However, business analysts and other users can also
benefit from this guide by learning the basic OpenL Tablets concepts described herein.

Basic knowledge of Java, Ant, and Microsoft Excel is required to use this guide effectively.

1.2 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Document describing OpenL Tablets WebStudio, a web application for
managing OpenL Tablets projects through a web browser.

http://openl-tablets.org/ OpenL Tablets open source project website.

1.3 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons, perspectives,
tabs, tooltip labels, tree elements, views, and windows.

 Represents keys, such as F9 or CTRL+A.

 Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic Represents any information to be entered in a field.

 Represents documentation titles.

< > Represents placeholder values to be substituted with user specific values.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide/index.html
http://openl-tablets.org/

OpenL Tablets Developer's Guide Preface

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 5 of 28

Typographic styles and conventions

Convention Description

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external
source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 6 of 28

2 Introducing OpenL Tablets
This chapter introduces OpenL Tablets and describes its main concepts.

The following topics are included in this chapter:

 What Is OpenL Tablets?

 Basic Concepts

 System Overview

 Quick Start with OpenL Tablets

2.1 What Is OpenL Tablets?
OpenL Tablets is a business rules management system and business rules engine based on tables presented in
Excel documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing
business logic specifications as executable source code. Since the format of tables used by OpenL Tablets is
familiar to business users, OpenL Tablets bridges a gap between business users and developers, thus reducing
costly enterprise software development errors and dramatically shortening the software development cycle.

In a very simplified overview, OpenL Tablets can be considered as a table processor that extracts tables from
Excel documents and makes them accessible from the application.

The major advantages of using OpenL Tablets are as follows:

 OpenL Tablets removes the gap between software implementation and business documents, rules, and
policies.

 Business rules become transparent to developers.

For example, decision tables are transformed into Java methods or directly into web service methods. The
transformation is performed automatically.

 OpenL Tablets verifies syntax and type errors in all project document data, providing convenient and
detailed error reporting. OpenL Tablets is able to directly point to a problem in an Excel document.

 OpenL Tablets provides calculation explanation capabilities, enabling expansion of any calculation result by
pointing to source arguments in the original documents.

 OpenL Tablets enables users to create and maintain tests to insure reliable work of all rules.

 OpenL Tablets provides cross-indexing and search capabilities within all project documents.

 OpenL Tablets provides full rules lifecycle support through its business rules management applications.

 OpenL Tablets supports the .xls and .xlsx file formats.

2.2 Basic Concepts
This section describes the basic concepts of OpenL Tablets and includes the following topics:

 Rules

 Tables

 Projects

 Wrapper

 Execution Mode for OpenL Project

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 7 of 28

Rules

In OpenL Tablets, a rule is a logical statement consisting of conditions and actions. If a rule is called and all its
conditions are true, then the corresponding actions are executed. Basically, a rule is an IF-THEN statement. The
following is an example of a rule expressed in human language:

If a service request costs less than 1,000 dollars and takes less than 8 hours to execute, then the service request
must be approved automatically.

Instead of executing actions, rules can also return data values to the calling program.

Tables

Basic information OpenL Tablets deals with, such as rules and data, is presented in tables. Different types of
tables serve different purposes. For more information on table types, see the OpenL Tablets Reference Guide,
the Table Types section.

Projects

An OpenL Tablets project is a container of all resources required for processing rule related information. Usually,
a project contains Excel files and Java code. For more information on projects, see the OpenL Tablets Reference
Guide, chapter working with Projects.

There can be situations where OpenL Tablets projects are used in the development environment but not in
production, depending on the technical aspects of a solution.

Wrapper

A wrapper is a Java object that exposes rule tables via Java methods and data tables as Java objects and allows
developers to access table information from code. Wrappers are essential for solutions where compiled OpenL
Tablets project code is embedded in solution applications. If tables are accessed through web services, client
applications are not aware of wrappers but they are still used on the server.

For more information on wrappers, see Using OpenL Tablets rules from Java Code.

Execution Mode for OpenL Project

Execution mode for OpenL project is a light weight compilation mode that enables only evaluating of rules; but
editing, tracing and search are not available. Since the Engine will not load test tables and keep debug
information in memory in this mode, memory consumption is up to 5 times less than for debug mode.

By default, the execution mode (exectionMode=true) is used in OpenL Tablets Web Services.

The debug mode (exectionMode=false) is used by default in OpenL Tablets WebStudio.

Flag indicating required mode is introduced in runtime API and in wrappers.

To compile an OpenL Tablets project in execution mode, proceed as follows:

 If the OpenL Tablets high level API (instantiation strategies) is used, define an execution mode in a
constructor of the particular instantiation strategy.

 If the low level API (Engine factories) is used, set an execution mode flag using the
setExecutionMode(boolean) method.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide/index.html
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide/index.html
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide/index.html

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 8 of 28

2.3 System Overview
The following diagram displays how OpenL Tablets is used by different types of users:

OpenL Tablets
project

P
P

PP
P

PP
P

P

Excel tables

Client
application

IDE

OpenL
WebStudio

Administrator

DeveloperSolution
developer

Business
user

Define and maintain,
test and fix rules

Manage projects,
measure performance

Work on OpenL Tablets
project with Maven

Execute rules through
wrappers

Execute rules through
web services

Figure 1: OpenL Tablets overview

A typical lifecycle of an OpenL Tablets project is as follows:

1. A business analyst creates a new OpenL Tablets project in OpenL Tablets WebStudio.

Optionally, development team may provide the analyst with a project in case of complex configuration.

The business analyst also creates correctly structured tables in Excel files based on requirements and
includes them in the project. Typically, this task is performed through Excel or OpenL Tablets WebStudio in a
web browser.

2. The business analyst performs unit and integration tests by creating test tables and performance tests on rules
through OpenL Tablets WebStudio.

As a result, fully working rules are created and ready to be used.

3. A developer adds configuration to the project according to application needs.

Alternatively, they can create a new OpenL Tablets project in their IDE via OpenL Maven Archetype and
adjust it to use business user input.

4. A developer employs business rules directly through the OpenL Tablets engine or remotely through web
services.

5. Whenever required, the business user updates or adds new rules to project tables.

OpenL Tablets business rules management applications, such as OpenL Tablets WebStudio, Rules
Repository, and Rule Service, can be set up to provide self-service environment for business user changes.

2.4 Quick Start with OpenL Tablets
OpenL Tablets provide a few ways to create a project. We recommend using Simple Project Maven Archetype
approach for creating a project for the first time or create it via OpenL Tablets WebStudio. For more information
on approaches for creating a project with detailed descriptions, see How to Start With OpenL Rules Project.

OpenL Tablets Developer's Guide Introducing OpenL Tablets

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 9 of 28

After a project is created, a zip or Excel file for importing the project to OpenL Tablets WebStudio can be used.
For more information on importing an existing project into OpenL Tablets WebStudio, see OpenL Tablets
WebStudio User Guide.

OpenL Tablets WebStudio provides convenient UI to work with rules. However, its usage can be avoided by
working with rules from IDE only using the OpenL Tablets Maven plugin. The plugin provides compilation and
testing of rules and wrapper generation support.

Also, OpenL Tablets has OpenL Tablet Demo Package available at OpenL Tablets website. A demo is a zip file that
contains a Tomcat with configured OpenL Tablets WebStudio and OpenL Tablets Web Services projects. It can be
used to effectively start using OpenL Tablets products.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide/index.html
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide/index.html
http://openl-tablets.org/

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 10 of 28

3 OpenL Tablets Rules Projects
This chapter describes how to create and use OpenL Tablets Rules projects.

The following topics are included in this chapter:

 OpenL Rules Project

 Rules Project Descriptor

 Project Resolving

 How to start with OpenL Rules Project

 Customizing Table Properties

 Tables Validation

 Module Dependencies: Classloaders

 Peculiarities of OpenL Tablets Implementation

3.1 OpenL Rules Project
OpenL Rules project is a project that contains Excel files with OpenL Tablets rules and may contain a rules
project descriptor. The rules project descriptor is a XML file that defines project configuration and allows setting
project dependencies.

OpenL Rules Project can easily use rules from other projects via dependency functionality.

3.2 Rules Project Descriptor
A rules project descriptor is a XML file that contains information about the project and configuration details used
by OpenL to load and compile the rules project. The predefined name that is used for a rules project descriptor
is rules.xml.

This section includes the following topics:

 Quick Overview

 Descriptor Elements

Quick Overview

The following code fragment is an example of the rules project descriptor:
<project>

 <!-- Project name. -->

 <name>Project name</name>

 <!-- Optional. Comment string to project. -->

 <comment>comment</comment>

 <!-- OpenL project includes one or more rules modules. -->

 <modules>

 <module>

 <name>MyModule1</name>

 <type>API</type>

<!--

 Rules document which is usually an excel file in the project.

 -->

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 11 of 28

 <rules-root path="MyModule1.xls"/>

 </module>

 <module>

 <name>MyModule2</name>

 <type>API</type>

<!--

 Rules document which is usually an excel file in the project.

 -->

 <rules-root path="MyModule2.xls"/>

 <method-filter>

 <includes>

 <value> * </value>

 </includes>

 </method-filter>

 </module>

 </modules>

<dependencies>

 <dependency>

 <name>projectName</name>

 <autoIncluded>false</autoIncluded>

 </dependency>

 </dependencies>

 <properties-file-name-pattern>{lob}</properties-file-name-pattern>

 <properties-file-name-

processor>default.DefaultPropertiesFileNameProcessor</properties-file-name-processor>

 <!-- Project's classpath (list of all source dependencies). -->

 <classpath>

 <entry path="path1"/>

 <entry path="path2"/>

 </classpath>

</project>

Descriptor Elements

The descriptor file contains several sections that describe project configuration:

 Project Configurations

 Module Configurations

 Dependency Configurations

 Classpath Configurations

Project Configurations

The project configurations are as follows:

Project section

Tag Required Description

name yes Project name. It is a string value which defines a user-friendly project name.

comment no Comment for project.

dependency no Dependencies to projects.

modules yes Project modules. A project can have one or several modules.

classpath no Project relative classpath.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 12 of 28

Project section

Tag Required Description

properties-file-
name-pattern

no File name pattern to be used by the file name processor. The file name processor adds
extracted module properties from a module file name.

properties-file-
name-processor

no Custom implementation of
org.openl.rules.project.PropertiesFileNameProcessor used instead of
default implementation.

Module Configurations

The module configurations are as follows:

Module section

Tag Required Description

name yes/no Module name. It is a string value which defines a user-friendly module name.

Note: It is used by OpenL Tablets WebStudio application as a module display name.
It is not required for modules defined via wildcard.

type yes Module instantiation type. Possible values are case-insensitive and can be dynamic, api,
or static (deprecated). It defines the way of OpenL project instantiation.

classname yes/no Name of rules interface. It is used together with type. It is not required for the api type.

method-filer no Filter that defines tables to be used for interface generation. Java regular expression
can be used to define a filter for multiple methods.

rules-root yes/no Path to the main file of a rules module. It is used together with type. Ant pattern can be
used to define multiple modules via wildcard. For more information on Ant patterns,
see Ant patterns.

Dependency Configurations

The dependency configurations are as follows:

Dependency section

Tag Required Description

name yes Dependency project name.

autoIncluded yes Identifier, which, if set to true, that all modules from the dependency project will be used
in this project module.

If it is set to false, modules from the dependency project can be used in this project as
dependencies, and each module will define its own list of used dependency modules.

Classpath Configurations

The classpath configurations are as follows:

Classpath section

Tag Required Description

entry no Path for the classpath entry, that is, classes or jar file.

https://ant.apache.org/manual/dirtasks.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 13 of 28

3.3 Project Resolving
The RulesProjectResolver Java class resolves all OpenL Tablets projects inside the workspace. The Resolver
lists all folders in the workspace and tries to detect the OpenL Tablets project by the predefined strategy. The
easiest way to initialize RulesProjectResolver is to use the loadProjectResolverFromClassPath() static
method that uses project-resolver-beans.xml from classpath, that is, Spring beans configuration that defines
all resolving strategies and their order.

Make sure that the resolving strategies are in the correct order, as some projects may be matched by several
resolving strategies. By default, the resolving strategies are in the following order:

Resolving strategies

Number Strategy Description

1. Project descriptor
resolving strategy

The strictest resolving strategy. It is based on the descriptor file as described previously
in this section.

2. Excel file resolving
strategy

A resolving strategy for the simplest OpenL project which contains only Excel files in
root folder without wrappers and descriptor. Each Excel file represents a module.

3.4 How to Start with OpenL Rules Project
Firstly, an OpenL Rules project must be created. It can be done in the following ways:

 using Maven archetype

 using OpenL Tablets WebStudio

 manually

See the following sections for detailed information:

 Creating a Project Using the Maven Archetype

 Creating a Project in OpenL Tablets WebStudio

 Creating a Project Manually

 Editing Rules

 Using OpenL Tablets Rules from Java Code

 Handling Data and Data Types in OpenL Tablets

Creating a Project Using the Maven Archetype

OpenL Tablets provides the Maven archetype which can be used to create a simple OpenL Rules project.

To create a project using the Maven archetype, proceed as follows:

1. Execute the following command in command line:
mvn archetype:generate

Maven runs the archetype console wizard.

2. Select the openl-simple-project-archetype menu item.

As an alternative way is using the following command:
mvn archetype:generate

–DarchetypeGroupId=org.openl.rules

–DarchetypeArtifactId=openl-simple-project-archetype

-DarchetypeVersion=5.X.X

3. Follow with the Maven creation wizard.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 14 of 28

After all steps are completed, a new Maven based project appears in the file system. It is an OpenL Rules
project which has one module with simple rules in it.

4. Execute the following command in the command line from the root of the project folder to compile the
project:
mvn install

After executing this command, the following files can be found in the target folder:

1. zip file with "-deployable" suffix for importing the project to OpenL Tablets WebStudio.

For more information, see [OpenL Tablets WebStudio User Guide].

2. zip file (with "-runnable" suffix) that can be executed after extracting it.

It demonstrates how OpenL Tablets rules can be invoked from Java code.

3. jar file that contains only compiled Java classes.

This jar can be put in classpath of the project and used as a depended library.

Creating a Project in OpenL Tablets WebStudio

OpenL Tablets WebStudio allows users to create new rule projects in the Repository in one of the following
ways:

 create a rule project from template

 create a rule project from Excel files

 create a rule project from zip archive

 import a rule project from workspace

The following diagram explains how projects are stored in OpenL Tablets WebStudio and then deployed and
used by OpenL Tablets Web Services:

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide/index.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 15 of 28

Figure 2: OpenL Tablets WebStudio and OpenL Tablets Web Services Integration

When a user starts editing a project, it is extracted from Design Repository and placed in the file system, in a
user workspace. The project becomes locked in Design Repository for editing by other users. After editing is
finished, the user saves the project. An updated version of the project is saved to Design Repository and
becomes available for editing by other users.

OpenL Tablets Web Services use separate repository instance, Production Repository. OpenL Tablets WebStudio
can be configured to deploy complete and tested rules projects to that repository.

For more information, see the OpenL Tablets WebStudio User Guide.

Creating a Project Manually

OpenL does not oblige a user to use predefined ways of project creation and enables using the user’s own
project structure. The Project Resolving mechanism can be used as a base for the project structure definition.
Depending on the resolving strategy, more or less files and folders are to be created, but several project
elements definition is mandatory. For more information on manually creating a project, see OpenL Rules
Project.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide/index.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 16 of 28

Editing Rules

When a project is created, business rules have to be defined. It can be done using OpenL Tablets WebStudio or
manually using MS Excel. If the simple rules project is used, there are several simple predefined rules that can be
used as an example.

Using OpenL Tablets Rules from Java Code

For access to rules and data in Excel tables, OpenL Tablets API is used. OpenL Tablets provides a wrapper to
facilitate easier usage.

This section illustrates the creation of a wrapper for a Simple project in IDE. There is only one rule hello1 in the
Simple project by default.

Figure 3: The hello1 rule table

Proceed as follows:

1. In the project src folder, create an interface as follows:
public interface Simple {

 void hello1(int i);

}

2. Create a wrapper object as follows:
import static java.lang.System.out;

import org.openl.rules.runtime.RulesEngineFactory;

public class Example {

 public static void main(String[] args) {

 //define the interface

 RulesEngineFactory<Simple > rulesFactory =

 new RulesEngineFactory<Simple>("TemplateRules.xls",

 Simple.class);

 Simple rules = (Simple) rulesFactory.newInstance();

 rules.hello1(12);

 }

}

When the class is run, it executes and displays Good Afternoon, World!

The interface can be generated by OpenL Tablets in runtime if the developer does not define it when initializing
the rule engine factory. In this case, rules can be executed via reflection.

The following example illustrates using a wrapper with a generated interface in runtime:
public static void callRulesWithGeneratedInterface(){

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 17 of 28

 // Creates new instance of OpenL Rules Factory

 RulesEngineFactory<?> rulesFactory =

new RulesEngineFactory<Object>("TemplateRules.xls");

 //Creates new instance of dynamic Java Wrapper for our lesson

Object rules = rulesFactory.newInstance();

 //Get current hour

 Calendar calendar = Calendar.getInstance();

 int hour = calendar.get(Calendar.HOUR_OF_DAY);

 Class<?> clazz = rulesFactory.getInterfaceClass();

try{

Method method = clazz.getMethod("hello1”, int.class);

out.println("* Executing OpenL rules...\n");

method.invoke(rules, hour);

}catch(NoSuchMethodException e){

}catch (InvocationTargetException e) {

}catch (IllegalAccessException e) {

}

}

This section includes the following topics:

 Using OpenL Tablets Rules with the Runtime Context

 Using OpenL Tablets Projects from Java Code

 Accessing a Test Table from Java Code

 Generating Java Classes from Datatype Tables

Using OpenL Tablets Rules with the Runtime Context

This section describes using runtime context for dispatching versioned rules by dimension properties values.

For example, two rules are overloaded by dimension properties. Both rules have the same name.

The first rule, covering an Auto line of business, is as follows:

Figure 4: The Auto rule

Pay attention to the rule line with the LOB property.

The second rule, covering a Home line of business, is as follows:

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 18 of 28

Figure 5: The Home rule

A wrapper enables the user to define which of these rules must be executed:
// Getting runtime environment which contains context

IRuntimeEnv env = ((IEngineWrapper) rules).getRuntimeEnv();

// Creating context

IRulesRuntimeContext context = new DefaultRulesRuntimeContext();

env.setContext(context);

// define context

context.setLob("Home”);

As a result, the code of the wrapper with the run-time context resembles the following:
import static java.lang.System.out;

import org.openl.rules.context.DefaultRulesRuntimeContext;

import org.openl.rules.context.IRulesRuntimeContext;

import org.openl.rules.runtime.RulesEngineFactory;

import org.openl.runtime.IEngineWrapper;

import org.openl.vm.IRuntimeEnv;

public class ExampleOfUsingRuntimeContext {

 public static void main(String[] args) {

 //define the interface

 RulesEngineFactory<simple> rulesFactory = new

RulesEngineFactory<Simple>("TemplateRules.xls", Simple.class);

 Simple rules = (Simple) rulesFactory.newInstance();

 // Getting runtime environment which contains context

 IRuntimeEnv env = ((IEngineWrapper) rules).getRuntimeEnv();

 // Creating context (most probably in future, the code will be different)

 IRulesRuntimeContext context = RulesRuntimeContextFactory.

buildRulesRuntimeContext(); env.setContext(context);

 context.setLob("Home");

 rules.hello1(12);

 }

}

Run this class. In the console, ensure that the rule with lob = Home was executed. With the input parameter int
= 12, the It is Afternoon, Guys phrase is displayed.

Using OpenL Tablets Projects from Java Code

OpenL Tablets projects can be instantiated via SimpleProjectEngineFactory. This factory is designed to be
created via SimpleProjectEngineFactoryBuilder. A builder has to be configured. The main builder method is
setProject(String location). The project location folder has to be specified via this method.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 19 of 28

The following example instantiates the OpenL Tablets project:
ProjectEngineFactory<Object> projectEngineFactory = new

SimpleProjectEngineFactory.SimpleProjectEngineFactoryBuilder<Object>().setProject(<project

location>) .build();

Object instance = projectEngineFactory.newInstance();

The above example instantiates the OpenL Tablets project generated in runtime interface. A method from
instantiated project can be invoked via reflection mechanism. ProjectEngineFactory returns generated
interface via the getInterfaceClass() method.

If a static interface must be used, the interface must be specified in SimpleProjectEngineFactoryBuilder.
The following example illustrates how to instantiate a project with a static interface.
SimpleProjectEngineFactory<SayHello> simpleProjectEngineFactory = new

SimpleProjectEngineFactoryBuilder<SayHello>().setProject<project location>)

 .setInterfaceClass(SayHello.class)

 .build();

SayHello instance = simpleProjectEngineFactory.newInstance();

SimpleProjectEngineFactoryBuilder has additional methods to configure an engine factory. For example, the
setWorkspace()method defines a project workspace for dependent projects resolving. The execution mode can
be changed via the setExecutionMode() method. By default, the runtime execution mode is enabled. If the
instance class needs to provide runtime context, it must be specified via setProvideRuntimeContext(true).

OpenL Tablets WebStudio supports compilation of a module from project in single mode. A module can be
compiled from a project in a single module via setModule(String moduleName). If this method is used with the
single mode module name, compilation for this module is used from the project.

Accessing a Test Table from Java Code

Test results can be accessed through the test table API. For example, the following code fragment executes all
test runs in a test table called insuranceTest and displays the number of failed test runs:
RulesEngineFactory<?> rulesFactory = new RulesEngineFactory<?>("Tutorial_1.xls");

IOpenClass openClass = rulesFactory.getCompiledOpenClass();

IRuntimeEnv env = SimpleVMFactory.buildSimpleVM().getRuntimeEnv();

Object target = openClass.newInstance(env);

IOpenMethod method = openClass.getMatchingMethod("testMethodName", testMethodParams);

TestUnitsResults res = (TestUnitsResults) testMethod.invoke(engine, new Object[0], env);

Generating Java Classes from Datatype Tables

Some rules require complex data models as input parameters. Developers have to generate classes for each
datatype defined in an Excel file for using them in a static interface as method arguments. The static interface
can be used in engine factory. For more information on how to create and use a wrapper, see Using OpenL
Tablets rules from Java Code.

Note: Datatype is an OpenL table of the Datatype type created by a business user. It defines a custom data type. Using
these data types inside the OpenL Tablets rules is recommended as the best practice. For more information on
datatypes, see [OpenL Tablets Reference Guide], the Datatype Table section.

To generate datatype classes, proceed as follows:

1. For Maven, configure the OpenL Maven plugin as described in Configuring the OpenL Maven Plugin and run
the Maven script.

2. For Ant, configure the Ant task file as described in Configuring the Ant Task File and execute the Ant task file.

Configuring the OpenL Maven Plugin

To generate an interface for rules and datatype classes defined in the MS Excel file, add the following Maven
configuration to the pom.xml file:

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide/index.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 20 of 28

<build>

 [...]

 <plugins>

 [...]

 <plugin>

 <groupId>org.openl.rules</groupId>

 <artifactId>openl-maven-plugin</artifactId>

 <version>${openl.rules.version}</version>

 <configuration>

 <generateInterfaces>

 <generateInterface>

 <srcFile>src/main/openl/rules/TemplateRules.xls</srcFile>

 <targetClass>

 org.company.gen.TemplateRulesInterface

 </targetClass>

 </generateInterface>

 </generateInterfaces>

 </configuration>

 <executions>

 <execution>

 <goals>

 <goal>generate</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 </plugins>

 [...]

</build>

In this case, classes and rules project descriptor, rules.xml, is generated on each Maven run on generate-
sources phase.

Each <generateInterface> section has a number of parameters described in the following table.

<generateInterface> section parameters

Name Type Required Description

srcFile String true Reference to the Excel file for which an interface class must be
generated.

targetClass String true Full name of the interface class to be generated. OpenL Tablets
WebStudio recognizes modules in projects by interface classes
and uses their names in UI. If there are multiple wrappers with
identical names, only one of them is recognized as a module in
OpenL Tablets WebStudio.

displayName String false End user-oriented title of the file that appears in OpenL Tablets
WebStudio. A default value is Excel file name without extension.

targetSrcDir String false Folder where the generated interface class must be placed. An
example is src/main/java.

The default value is ${project.build.sourceDirectory}.

openlName String false OpenL Tablets configuration to be used. For OpenL Tablets, the
org.openl.xls value must always be used.

The default value is org.openl.xls.

userHome String false Location of user-defined resources relative to the current OpenL
Tablets project. The default value is ..

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 21 of 28

<generateInterface> section parameters

Name Type Required Description

userClassPath String false Reference to the folder with additional compiled classes that is
imported by the module when the interface is generated.

The default value is null.

ignoreTestMethods boolean false If true, test methods are not added to interface class. It is used
only in JavaInterfaceAntTask. The default value is true.

generateUnitTests boolean false Parameter that overwrites the base generateUnitTests value.

unitTestTemplatePath String false Parameter that overwrites the base unitTestTemplatePath value.

overwriteUnitTests boolean false Parameter that overwrites the base overwriteUnitTests value.

For more configuration options, see the OpenL Tablets Maven Plugin Guide.

Configuring the Ant Task File

An example of the build file is as follows:
<project name="GenJavaWrapper" default="generate" basedir="../">

<taskdef name="openlgen" classname="org.openl.conf.ant.JavaWrapperAntTask"/>

<target name="generate">

<echo message="Generating wrapper classes..."/>

<openlgen openlName="org.openl.xls" userHome="."

srcFile="rules/Rules.xls"

targetClass="com.exigen.claims.RulesWrapper"

displayName="Rule datatypes"

targetSrcDir="gen"

>

</openlgen>

<openlgen openlName="org.openl.xls" userHome="."

srcFile="rules/Data.xls"

targetClass=" com.exigen.claims.DataWrapper"

displayName="Data datatypes"

targetSrcDir="gen"

>

</openlgen>

</target>

</project>

When the file is executed, it automatically creates Java classes for datatypes for specified Excel files. The Ant
task file must be adjusted to match contents of the specific project.

For each Excel file, an individual <openlgen> section must be added between the <target> and </target> tags.

Each <openlgen> section has a number of parameters that must be adjusted as described in the following table:

<openlgen> section parameters

Parameter Description

openlName OpenL Tablets configuration to be used. For OpenL Tablets, the org.openl.xls value must
always be used.

userHome Location of user-defined resources relative to the current OpenL Tablets project.

srcFile Reference to the Excel file for which a wrapper class must be generated.

targetClass Full name of the wrapper class to be generated.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Maven%20Plugin%20Guide/index.html

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 22 of 28

<openlgen> section parameters

Parameter Description

displayName End user-oriented title of the file that appears in OpenL Tablets WebStudio.

targetSrcDir Folder where the generated wrapper class must be placed.

Handling Data and Data Types in OpenL Tablets

This section includes the following topics about data and data types handling in OpenL Tablets:

 Datatype Lifecycle

 Inheritance in Datatypes

 Byte Code Generation at Runtime

 Java Files Generation

 OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper

 Data Table

Datatype Lifecycle

Datatype lifecycle is as follows:

1. A Datatype table is created in the rules file.

At runtime, Java class is generated for each datatype as described in Byte Code Generation at Runtime.

2. If Java classes are generated from a Datatype table as described in Generating Java Classes from Datatype
Tables, the appropriate generated Java classes must be included in classpath as described in Java Files
Generation.

Inheritance in Datatypes

In OpenL Tablets, one datatype can be inherited from another one. The new data type inherited from another
one has access to all fields defined in the parent data type. If a child datatype contains fields defined in the
parent datatype, and the field is declared with different types in the child and the parent datatype, warnings or
errors appear.

The constructor with all fields of the child datatype contains all fields from the parent datatype, and the
toString, equals and hashCode methods use all fields form the parent datatype.

Byte Code Generation at Runtime

At runtime, when OpenL Tablets engine instance is being built, for each datatype component, Java byte code is
generated as described in Java Files Generation in case there are no previously generated Java files on classpath.
It represents a simple Java bean for this datatype. This byte code is loaded to classloader so the object of type
Class<?> can be accessed. When using this object through reflections, new instances are created and fields of
datatypes are initialized. For more information, see the DatatypeOpenClass and DatatypeOpenField classes.

Attention! If Java class files for the datatypes on classpath are previously generated, they are used at runtime,
regardless of changes made in Excel. To apply these changes, remove Java files and generate Java classes from
the Datatype tables as described in Generating Java Classes from Datatype Tables.

Java Files Generation

As generation of datatypes is performed at runtime and developers cannot access these classes in their code,
the mechanism described at Generating Java Classes from Datatype Tables is introduced. It allows generating
Java files and putting them on the file system so users can use these data types in their code.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 23 of 28

OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper

After parsing, each data type is put to compilation context and becomes accessible for rules during binding. All
data types are placed to IOpenClass of the whole module and are accessible from
CompiledOpenClass#getTypes when the OpenL Tablets wrapper is generated.

Each TableSyntaxNode of the xls.datatype type contains an object of data type as its member.

Data Table

A data table contains relational data that can be referenced as follows:

 from other tables within OpenL Tablets

 from Java code through wrappers as Java arrays

 through the OpenL Tablets runtime API as a field of the Rules class instance

Figure 6: Simple data table

In this example, information in the data table can be accessed from the Java code as illustrated in the following
code example:
int[] num = tableWrapper.getNumbers();

for (int i = 0; i < num.length; i++) {

System.out.println(num[i]);

}

where tableWrapper is an instance of the wrapper class of the Excel file.

Figure 7: Datatype table and a corresponding data table

In Java code, the data table p1 can be accessed as follows:
Person[] persArr = tableWrapper.getP1();

for (int i = 0; i < persArr.length; i++) {

System.out.println(persArr[i].getName() + ' ' + persArr[i].getSsn());

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 24 of 28

}

where tableWrapper is an instance of the Excel file wrapper.

3.5 Customizing Table Properties
The OpenL Tablets design allows customizing available table properties. OpenL Tablets Engine employs itself to
provide support of properties customization. The TablePropertiesDefinitions.xlsx file contains all
declaration required to handle and process table properties.

Updating table properties requires recompiling the OpenL Tablets product. The developer has to contact the
OpenL Tablets provider to retrieve the table properties file. When the changes are made, the developer has to
send the file back to the provider, and a new OpenL Tablets package is delivered to the developer.

Alternatively, the developer can recompile OpenL Tablets from sources of their own.

Dispatching Table Properties

Previously selecting tables that correspond to the current runtime context are processed by the Java code. Now
the rules dispatching is the responsibility of the generated Dispatcher decision table. Such table is generated for
each group of methods overloaded by dimension properties. The Dispatcher table works like all decision tables
so the first rule matched by properties is executed even if there are several tables matched by properties.
Previously, in Java code dispatching, AmbiguousMethodException would be thrown in such case.

To support both functionalities, the dispatching.mode system property is introduces. It has the following
possible values:

dispatching.mode property values

Value Description

java Dispatching is processed by Java code. The benefit of such approach is stricter dispatching: if several tables
are matched by properties, AmbiguousMethodException is thrown.

dt Dispatching is processed by the Dispatcher decision table. The main benefit of this approach is performance:
decision table is invoked much faster than Java code dispatching is performed.

If the system property is not specified or if the dispatching.mode property has an incorrect value, the Java
approach is used by default.

Tables Priority Rules

To make tables dispatching more flexible, tablesPriorityRules DataTable in TablePropertiesDefinitions.xlsx
is used. Each element of this table defines one rule of how to compare two tables using their properties to find
more suitable table if several tables are matched by properties. Priority rules are used sequentially in
comparison of two tables: if one priority rule gives result of the same priority of tables, the next priority rule is
used.

Priority rules are used differently in the Dispatcher table approach and Java code dispatching but have the same
sense: select suitable table if there are several tables matched by dimension Properties.

In case of the Dispatching table, priority rules are used to sort methods of an overloaded group. Each row of the
Dispatcher table represents a rule, so after sorting, high priority rules are at the top of decision tables, and if
several rows of the decision table are fired, only the first one, of the highest priority, is executed.

In case of Java code, dispatching priority rules is used after selecting tables that correspond to the current
runtime context: all matched tables are sorted in order to select one with the highest priority. If it is impossible

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 25 of 28

to find the priority with the highest rule when several tables have the same priority and are of a higher priority
than all other tables, AmbiguousMethodException is thrown.

There are two predefined priority rules and possibility to implement Java class that compares two tables using
their properties:

 min(<property name>)

A table that has lower value of property specified will have a higher priority. The property specified by name
must be instanceof Comparable<class of property value>.

 max(<property name>)

A table that has a higher value of property specified will have a higher priority. The property specified by
name must be instanceof Comparable<class of property value>.

To specify the Java comparator of tables, the javaclass:<java class name> expression must be used. Java
class must implement Comparator<ITableProperties>.

3.6 Tables Validation
The validation phase follows the binding phase and allows checking all tables for errors and accumulating all
errors.

All possible validators are stored in ICompileContext of the OpenL class. The default compile context is

org.openl.xls.RulesCompileContext that is generated automatically.
Validators get the OpenL Tablets and array of TableSyntaxNodes that represent tables for check and must
return ValidationResult. Validation results are as follows:

 status, which can be fail or success

 all error and warning messages that occurred

This section includes the following topics:

 Table Properties Validators

 Existing Validators

Table Properties Validators

The table properties that are described in TablePropertyDefinition.xlsx can have constraints. Some
constraints have predefined validators associated with them.

To add a property validator, proceed as follows:

1. Add constraint as follows:

1. Define constraint in TablePropertyDefinition.xlsx, in the constraints field.

2. Create constraint class and add it to ConstraintFactory.

2. Create a validator as follows:

1. Create a class of the validator and define it in the method
org.openl.codegen.tools.type.TablePropertyValidatorsWrapper.init() constraint associated
with the validator.

2. If necessary, modify the velocity script RulesCompileContext-validators.vm in project
org.openl.rules.gen that generates org.openl.xls.RulesCompileContext.

3. To generate new org.openl.xls.RulesCompileContext with the validator, run
org.openl.codegen.tools.GenRulesCode.main(String[]).

3. Write unit tests.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 26 of 28

Existing Validators

The existing validators are as follows:

 Unique in module validator verifies uniqueness in a module of a property.

 Active table validator verifies correctness of an "active" property.

There can be only one active table validator per active table.

 Regular expression validator verifies string properties matching against the predefined regex pattern.

 Gap/overlap validator makes gap and overlap analysis for decision tables with the validateDT property set
to on.

 Dimension properties validator

3.7 Module Dependencies: Classloaders
The dependency class resolution mechanism is implemented using specialized classloading.

Each dependency has its own Java classloader so all classes used in compiling a specified module, including
generated datatype Java classes, are stored in the dependency classloader.

Dependency A
Classloader A

Class A Dependency B
Classloader B

Class B

Dependency C
Classloader C

Class C

Figure 8: Dependency classloaders

The root module contains references to all its dependencies classloaders. When loading any class, the following
algorithm is executed:

1. Get all dependencies classloaders.

2. Search for the required class in each dependency classloader, one by one.

3. If a class is found, return it.

4. If a class does not exist, search for the class by its classloader.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 27 of 28

Dependency A
Classloader A

Class A Dependency B
Classloader B

Class B

Dependency C
Classloader C

Class C

Root Module
Classloader

loadClass()

Figure 9: Load class from root module

For the dependency management feature, provide an appropriate DependencyManager object to the entry point
for the OpenL Tablets compilation.

Note: Using the same class in two classloaders can cause an error because the class will be loaded by two different
classloaders.

3.8 Peculiarities of OpenL Tablets Implementation
This section describes OpenL Tablets implementation specifics and includes the following topics:

 Lookup Tables Implementation Details

 Range Types Instantiation

Lookup Tables Implementation Details

At first, a lookup table goes through parsing and validation. In parsing, all parts of the table, such as header,
column headers, vertical conditions, horizontal conditions, return column, and their values are extracted. In
validation, OpenL checks if the table structure is proper.

To work with this kind of a table, the TransformedGridTable object is created with the constructor parameters
it had in the original grid table of the lookup table, without a header, and CoordinatesTransformer that
converts table coordinates to work with both vertical and horizontal conditions.

As a result, a GridTable is received. It works as a decision table structure. All coordinate transformations with
lookup structure go inside. The work with columns and rows is based on the physical, not logical, structure of
the table.

OpenL Tablets Developer's Guide OpenL Tablets Rules Projects

© 2004-2017 OpenL Tablets
OpenL Tablets 5.18 Page 28 of 28

Range Types Instantiation

IntRange can be created in one of the following ways:

IntRange creation methods

Format Description

new IntRange(int min_number,

int max_number)
Covers all numbers between min_number and max_number, including borders.

new IntRange(Integer value) Covers only a given value as the beginning and the end of the range.

new IntRange(String

rangeExpression)
Borders are parsed by formats of rangeExpression.

The same formats and restrictions are used in DoubleRange.

	1 Preface
	1.1 Audience
	1.2 Related Information
	1.3 Typographic Conventions

	2 Introducing OpenL Tablets
	2.1 What Is OpenL Tablets?
	2.2 Basic Concepts
	Rules
	Tables
	Projects
	Wrapper
	Execution Mode for OpenL Project

	2.3 System Overview
	2.4 Quick Start with OpenL Tablets

	3 OpenL Tablets Rules Projects
	3.1 OpenL Rules Project
	3.2 Rules Project Descriptor
	Quick Overview
	Descriptor Elements
	Project Configurations
	Module Configurations
	Dependency Configurations
	Classpath Configurations

	3.3 Project Resolving
	3.4 How to Start with OpenL Rules Project
	Creating a Project Using the Maven Archetype
	Creating a Project in OpenL Tablets WebStudio
	Creating a Project Manually
	Editing Rules
	Using OpenL Tablets Rules from Java Code
	Using OpenL Tablets Rules with the Runtime Context
	Using OpenL Tablets Projects from Java Code
	Accessing a Test Table from Java Code
	Generating Java Classes from Datatype Tables
	Configuring the OpenL Maven Plugin
	Configuring the Ant Task File

	Handling Data and Data Types in OpenL Tablets
	Datatype Lifecycle
	Inheritance in Datatypes
	Byte Code Generation at Runtime
	Java Files Generation
	OpenL Internals: Accessing a Datatype at Runtime and After Building an OpenL Wrapper
	Data Table

	3.5 Customizing Table Properties
	Dispatching Table Properties
	Tables Priority Rules

	3.6 Tables Validation
	Table Properties Validators
	Existing Validators

	3.7 Module Dependencies: Classloaders
	3.8 Peculiarities of OpenL Tablets Implementation
	Lookup Tables Implementation Details
	Range Types Instantiation

